Tag Archives: Batteries

Killifish, aging, and carbon-silicon composite batteries

Genetic study uncovers clues to explain how killifish stop aging during diapause

Killifish are really interesting organisms for scientific experiments. They are vertebrates, so they are closer to us genetically than insects or worms. But they are a lot easier to grow and care for then mice or rats. Some killifish have life spans of only three months. This makes them very attractive as aging model animals. If treatment extends their lifespan, you only have to wait 3 months to find out. With mice, you have to wait for several years.  This paper discusses another cool feature of the killifish model animal. Some kinds of killifish can go into a kind of suspended animation. I did not know that and it is fascinating.

 

Nano/Microstructured Silicon–Carbon Hybrid Composite Particles Fabricated with Corn Starch Biowaste as Anode Materials for Li-Ion Batteries | Nano Letters

Researchers develop high-capacity EV battery materials that double driving range

This article discusses a new composite silicon/carbon material for hosting lithium ions. Cramming lithium ions into a silicon matrix makes for an even higher energy battery than a standard lithium-ion battery. unfortunately, silicon expands under these conditions and can destroy the battery. By incorporating the silicon into a carbon matrix, these researchers increase the conductivity and the resilience of the battery to multiple charger Cycles. The result was a very nice paper. I love that they tried to make their composite material from readily available substances.

 

Continue reading

Raspberry Pi Computer: standalone “safe” machine

I want a computer that does not rely on a software service agreement to function. Cell phones obviously have to operate as a service since they need a network to operate. The phone is a gateway to the cell service. My kindle is similar for Amazon services. Laptops feel different to me. Computers feel like products. I own my laptop and I want to think of it as a standalone device, not a gateway to a cloud service.

Windows 10 is now a service. The future is clearly going in the direction of software as a service (SaaS as the kids put it). That’s fine, but I like to have at least some device that can’t be remotely bricked by a company.

Raspberry Pi Computer in a Box parts list:

Quick catch-up for other topics this week: I made a video I about sodium-ion batteries and people seemed interested. I think a sodium ion battery would be really cool. But I think the expectations of the youtube viewers may be a little inflated. Sodium is heavier than lithium. It yields less energy per atom, too. So it’s not going to be great for mobile. I made another video talking about that. So why bother with sodium? Lithium is relatively rare and expensive… so sodium might be better for stationary applications. It’s hard to say at this point, but I’m investing my time in an iron battery.

 

What can we really do about peak oil and global warming?

If you want to solve global warming, here is the method: help solar to beat the price per kilowatt-hour of natural gas. I think it can happen.

Consider the future of solar power. The price of panels is dropping quickly. A price of $0.50 per peak watt would have been absurdly optimistic a few years ago but it is now a virtual certainty. While solar panels may not advance as rapidly as Moore’s Law (as I read recently) they still fall in price by a significant margin every few years. I got my price data from renewableenergyworld.com. After removing the points from 2006-2008 because those years were hit hard by a silicon shortage, the data actually fit an exponential decay reasonably well.

 matlab_solar_energy_calcs

This graph shows the price of solar panels (blue circles) and an exponential fit to these data (green line). The black line indicates $0.50 per watt.

Continue reading